
#drupalgovcon @drupalgovcon @govdrupal www.drupalgovcon.org @bmoredrupal
Automate All The Things!

#drupalgovcon @drupalgovcon @govdrupal www.drupalgovcon.org @bmoredrupal

Automate all the Things!

https://consensus.enterprises

Colan Schwartz (colan on d.o)

Christopher Gervais (ergonlogic on d.o)

Dan Friedman (llamech on d.o)

Drupal GovCon is brought to you by Drupal4Gov, a non-profit organization dedicated to connecting and serving government employees committed to open source technology.
Drupal is a registered trademark of Dries Buytaert

https://www.drupal.org/u/colan
https://www.drupal.org/u/ergonlogic
https://www.drupal.org/u/llamech

★ Veteran open source programmers and sysadmins
★ Specializing in and
★ Experts in end-to-end application lifecycle
★ Focus on social enterprises, non-profits, and

public sector

Some of our Partnerships

Principles and Practices of
infrastructure-as-code
Why should we care?

A brief history of cloud
computing
How did we get into this

mess?

How do Terraform & Ansible support an
infrastructure-as-code strategy?
Providers, resources and

provisioners; oh my!

What we’ll discuss

Putting it all together
Demo time!

XKCD

… because, somehow, a

webcomic provides the

most succinct descriptions

of the reality of automation.

You can never have too much XKCD!

A Brief history of Cloud
Computing
Automate All the Things!

A brief history of cloud computing

● Time-sharing
(government/academic)

A brief history of cloud computing

● Time-sharing
(government/academic)

● Mainframes
(centralized/institutional)

A brief history of cloud computing

● Time-sharing
(government/academic)

● Mainframes
(centralized/institutional)

● Server rooms
(distributed/on-premise)

A brief history of cloud computing

● Time-sharing
(government/academic)

● Mainframes
(centralized/institutional)

● Server rooms
(distributed/on-premise)

● Datacenters
(co-location/hosted)

A brief history of cloud computing

● Time-sharing
(government/academic)

● Mainframes
(centralized/institutional)

● Server rooms
(distributed/on-premise)

● Datacenters
(co-location/hosted)

● Cloud
(utility computing)

The era of cloud computing

Benefits Challenges
Scalability Controlling costs

The era of cloud computing

Benefits Challenges
Scalability Controlling costs

Flexibility Increased complexity

The era of cloud computing

Benefits Challenges
Scalability Controlling costs

Flexibility Increased complexity

Automation Scarce expertise

Principles and Practices of
infrastructure-as-code
Automate All the Things!

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

● Keep documentation inline
(self-documented systems)

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

● Keep documentation inline
(self-documented systems)

● Version-control everything
(audit trail and reproducible builds)

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

● Keep documentation inline
(self-documented systems)

● Version-control everything
(audit trail and reproducible builds)

● Make small changes
(easier rollbacks)

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

● Keep documentation inline
(self-documented systems)

● Version-control everything
(audit trail and reproducible builds)

● Make small changes
(easier rollbacks)

● Test continuously
(fail early)

How do Terraform and Ansible
support an infrastructure-as-code
strategy?
Automate All the Things!

How does Terraform support an
infrastructure-as-code strategy?

Terraform allows us to define

infrastructure components in files

written in Terraform language

syntax.

These files can, in turn, be

committed into version control, and

thus handled as software.

https://www.terraform.io/docs/configuration/syntax.html

Components

Custom infrastructure-

as-code configuration

depends on Terraform

providers and resources,

which in turn depend on

Go, which Terraform is

written in. Terraform

Components

Custom infrastructure-

as-code configuration

depends on Terraform

providers and resources,

which in turn depend on

Go, which Terraform is

written in. Terraform

 Go

Components

Custom infrastructure-

as-code configuration

depends on Terraform

providers and resources,

which in turn depend on

Go, which Terraform is

written in.

Providers

Terraform

 Go

Components

Custom infrastructure-

as-code configuration

depends on Terraform

providers and resources,

which in turn depend on

Go, which Terraform is

written in.

Providers

Terraform

 Go

Resources

Components

Custom infrastructure-

as-code configuration

depends on Terraform

providers and resources,

which in turn depend on

Go, which Terraform is

written in.

Providers

Terraform

 Go

Configuration

Resources

Terraform Providers

A provider is responsible for understanding API interactions and exposing

resources (things you want to create). Examples of providers are

OpenStack, AWS, Azure, GCP, Digital Ocean, etc.

https://en.wikipedia.org/wiki/OpenStack

That’s how many different cloud providers Terraform

supports out-of-the-box. For details, see the list of providers

in the Terraform Registry.

297

https://registry.terraform.io/browse/providers

Terraform Resources

A resource is a thing you want to

create at your cloud provider.

Examples of resources are security

groups, VMs, and networking

elements such as routers and

floating IP addresses.

Terraform Variables

Just like in other types of code, variables can be used.

Format: var.VARIABLE_ID

https://www.terraform.io/docs/configuration/variables.html

Good cloud providers will have firewall rules allowing access to resources,

which act as an allow list preventing insecure access (e.g. to your DB

servers).

● Rule groups can be created

● Rules can be added to each group

Security Groups

Defining VMs/servers

Using everything we’ve learned so

far, it’s possible to configure virtual

machines (VMs) to be whatever

server types are required.

While infrastructure automation can be handled by Terraform, VM

configuration can be handled by Ansible.

They can work together in several ways:

● Terraform can run Ansible playbooks. ← Today’s demo

● Ansible can run Terraform code.

● Terraform can provide a dynamic inventory of VMs that can be used

independently by Ansible.

Configuring VMs from within Terraform

Configuring VMs from within Terraform

Applying defined infrastructure (& deleting it)

terraform destroy removes all

defined infrastructure managed by

Terraform.

terraform apply commits defined

infrastructure by making changes

necessary to actualize the desired

state.

In order keep track of IDs and other metadata, Terraform saves state.

Traditionally, this was stored locally, but for enterprise/team settings,

remote backends can now be used.

Saving State

https://www.terraform.io/docs/backends/index.html

How does Ansible support an
infrastructure-as-code strategy?

Ansible allows us to define

configuration in a simple YAML

syntax.

These files can, in turn, be

committed into version control, and

thus handled as software.

Components

Applying configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.
Ansible

Components

Applying configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.
Ansible

 Python

Components

Applying configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.
Ansible

 Python

Modules

Components

Applying configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.

Roles

Ansible

 Python

Modules

Components

Applying configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.

Roles

Ansible

 Python

Configuration

Modules

Authentication and Authorization

Authentication and Authorization

Step 1
User triggers

API call

Authentication and Authorization

Step 1
User triggers

API call

Step 2
API authenticates

user’s credentials

Authentication and Authorization

Step 1
User triggers

API call

Step 2
API authenticates

user’s credentials

Step 3
API checks that user is

authorized for task(s)

Authentication and Authorization (Terraform)

Step 1
User triggers

API call

Step 2
API authenticates

user’s credentials

Step 3
API checks that user is

authorized for task(s)

Step 4
API executes task(s) in

cloud infrastructure

Authentication and Authorization (Ansible)

Step 1
User runs Ansible

playbook

Step 2
Ansible connects

to remote server

over SSH

Step 3
Remote Ansible user

account authorized via

sudo

Step 4
Ansible runs module

scripts on remote

server

Putting It All Together
Automate All the Things!

#drupalgovcon @drupalgovcon @govdrupal www.drupalgovcon.org @bmoredrupal

Questions?

https://consensus.enterprises

Colan Schwartz (colan on d.o)

Christopher Gervais (ergonlogic on d.o)

Dan Friedman (llamech on d.o)

Drupal GovCon is brought to you by Drupal4Gov, a non-profit organization dedicated to connecting and serving government employees committed to open source technology.
Drupal is a registered trademark of Dries Buytaert

